lunes, 29 de abril de 2013


Bloque V 
Utilizas funciones factorizables en la resolución de problemas.
Ceros y raíces de la función
En matemática, se conoce como raíz (o cero) de una función (definida sobre un cierto cuerpo algebraico) f(x) a todo elemento x perteneciente al dominio de dicha función tal que se cumpla:

Llamamos ceros o raíces de una función f a los valores de x para los cuales se cumple que f(x)=0. Los ceros de una función son las abscisas de los puntos en los cuales su gráfica tiene contacto con el eje de las x.
   Para hallar los ceros de una función f(x), hay que buscar las abscisas de los puntos cuya ordenada es 0.
Para ello, planteamos f(x)=0 y despejamos, de ser posible, los valores de x que verifican la ecuación.
Ejemplos:
Busquemos las raíces de h(x)= x2 - 1     ( a=1, b=0, c= -1)
Planteamos x2 - 1=0
Despejamos x = x2 =  |x|= Ö 1 =>
|x|= 1 =>x1=1    o  x2= -1


Los valores  x1=1    o  x2= -1 son los puntos en los que el gráfico de esta función interseca al eje x.

Busquemos las raíces de g(x)= x2 + 2      ( a=1, b=0, c= 2 )
Planteamos ------------->x2 + 2 =0
Despejamos x ---------->x2 = -2


Como el cuadrado de un número real no puede ser negativo, g(x) no tiene raíces reales, es decir,  no tiene puntos de contacto con el eje x. 


Busquemos las raíces de g(x)= (x -3 )2
Planteamos -------------> ( x - 3 )2  =0
Despejamos x ---------->  x - 3      = Ö 0
x - 3      = 0  =>  x = 3

El  valor  x=3    es el único  punto en el  que el gráfico de esta función interseca al eje x, dicho punto coincide con su vértice, en este caso la raíz se llama doble.

Busquemos las raíces de g (x)= x 2 + 4x      ( a=1, b=4, c= 0)
Planteamos --------------->    x 2 + 4x  = 0
Extraemos factor común x--> x (x + 4 ) = 0
Si x (x + 4 ) = 0 => x=0     o     x + 4 =0
Despejamos x ---------->    x  + 4   =  0    =>  x = -4


Los valores  x1= 0   o  x2= -4  son los puntos en los que el gráfico de esta función interseca al eje x.

Busquemos las raíces de g (x)= x 2 + 2x - 3     ( a=1, b=2, c= -3)
Planteamos ------------->    x 2 + 2x - 3 =0



f(x) = x2 + x - 12

Cuando lo igualamos a cero y lo resolvemos tenemos:
x2 + x - 12 = 0 Igualando a cero.
(x + 4)(x - 3) = 0 Factorizando.
x = - 4 Solución 1
x = 3 Solución 2


Puesto que x1 = - 4 y x2 = 3 son soluciones de f(x) entonces f( -4 )= 0 y f( 3 )= 0. Decimos entonces que x = - 4 y x = 3 son raíces del polinomio f(x)= x2 + x - 12



Las raíces de f(x) = x3 - 4 x2 + x + 6 son x = - 1, x = 2 y x = 3


Teoremas del factor y del residuo
Teorema del residuo 

Si se divide la función polinomial ƒ(x) entre el binomio x - a donde a es un número real, el residuo es igual a ƒ(a). 

El teorema del residuo indica que el resultado de evaluar numéricamente una función polinomial para un valor a es igual al residuo de dividir el polinomio entre x - a. Un ejemplo de esto se ilustra en la parte de arriba. Se recomienda que el lector realice otras comprobaciones. Una conclusión muy importante del teorema del residuo es se puede evaluar numéricamente una función polinomial usando la división sintética. 

A partir de lo anterior, si ƒ(a) = 0, entonces x - a es un factor del polinomio porque el residuo es cero. Cuando se encuentra un valor de x para el cual ƒ(x) = 0 se ha encontrado una raíz del polinomio, en el supuesto anterior, a es una raíz del polinomio. 


Teorema del factor 

Si a es una raíz de ƒ(x), entonces x - a es un factor del polinomio, donde a es un número real. 

Aquí podemos observar la importancia de conocer el valor del residuo, ya que si éste es igual a cero, nos va a indicar que hemos encontrado un factor del polinomio y con él, una raiz del polinomio (una solución a la ecuación polinomial ƒ(x) = 0).
División sintética
La división sintética se realiza para simplificar la división de un polinomio entre otro polinomio de la forma x – c, logrando una manera mas compacta y sencilla de realizar la división.
Ilustraremos como el proceso de creación de la división sintética con un ejemplo:
Comenzamos dividiéndolo normalmente




Pero resulta mucho escribir pues repetimos muchos términos durante el procedimiento, los términos restadospueden quitarse sin crear ninguna confusión, al igual que no es necesario bajar los términos.al eliminar estos términos repetidos el ejercicio nos queda:

Como para este tipo de división solo se realiza con para divisores de la forma x – c entonces los coeficientes de la parte derecha siempre son 1 – c, por lo que podemos descartar el coeficiente 1 y el signo negativo, también se puede lograr una forma más compacta al mover los números hacia arriba, nos queda de la siguiente forma:
Si ahora insertamos a la primera posición del último renglón al primer coeficiente del residuo (2), tenemos que los primeros números de este renglón son los mismos coeficientes del cociente y el último número es el residuo, como evitamos escribir dos veces eliminamos el cociente.
Esta última forma se llama división sintética, pero ¿como hacerla sin tanto paso?, ahora les presentamos los pasos para llevar a cavo la división sintética:
1.     Se ordenan los coeficientes de los términos en un orden decreciente de potencias de x hasta llegar al exponente cero rellenando con coeficientes cero donde haga falta
2.     Después escribimos “c” en la parte derecha del renglón
3.     Se baja el coeficiente de la izquierda al tercer renglón.
4.     Multiplicamos este coeficiente por “c” para obtener el primer numero del segundo renglón (en el primer espacio de la izquierda nunca se escribe nada).
5.     Simplificamos de manera vertical para obtener el segundo número de el tercer renglón.
6.     Con este último número repetimos los pasos cuatro y cinco hasta encontrar el último número del tercer renglón, que será el residuo.
Ejemplos:

Donde -108 es el residuo
Por lo tanto el residuo es 91
Teorema fundamental del álgebra

El teorema fundamental del álgebra establece que todo polinomio de una variable no constante con coeficientes complejos tiene un raíz compleja, es decir, existe un número complejo que evaluado en el polinomio da cero. Este incluye polinomios con coeficiente reales, ya que cualquier número real es un número complejo con parte imaginaria igual a cero.
Aunque ésta en principio parece ser una declaración débil, implica todo polinomio de grado n de una variable no constante con coeficientes complejos n tiene, contando con las multiplicidades, exactamente n raíces. La equivalencia de estos dos enunciados se realiza mediante la división polinómica sucesiva por factores lineales.
Hay muchas demostraciones de este importante resultado, que requieren bastantes conocimientos matemáticos para formalizarlas. El nombre del teorema es considerado ahora un error por muchos matemáticos, puesto que es más un teorema del análisis matemático que del álgebra.













No hay comentarios:

Publicar un comentario