domingo, 26 de mayo de 2013

VIII Aplicaciones de funciones periódicas
Funciones trigonométrica
-       Seno
-       Coseno
-       Función Seno:
La función Seno se obtiene de dividir el cateto opuesto de un triángulo rectángulo, entre su hipotenusa:
Así por ejemplo, en el triángulo rectángulo siguiente:
el seno del ángulo alpha será:
Para obtener el valor de ángulo alpha, hay que sacar la función inversa del seno:
cualquier calculadora científica lo puede hacer, y generalmente hay que apretar una tecla "shift" o "2daf" que se encuentra típicamente en la esquina superior izquierda, y luego apretar la tecla "sin" (dice "sin" y no "sen" porque en 
inglés la función seno se escribe "sin"):
para este caso, el resultado da: 53.13010...
que es el valor en decimal que corresponde al ángulo alpha.
-       Función Cosecante
La función cosecante es parecida a la función seno, sólo que al revés. Esto es: en lugar de dividir el cateto opuesto entre la hipotenusa, se divide la hipotenusa entre el cateto opuesto
en principio, para obtener el valor del ángulo alpha, uno debería sacar la función inversa de la cosecante:
sin embargo, la mayoría de las calculadoras no sacan ésta función (ni siquiera la cosecante) porque suponen que el usuario sabe que es lo mismo, que sacar la función inversa del inverso del seno. O sea que en lugar de quebrarte la cabeza preguntándote "¿Cómo lo saco?" simplemente haz la siguiente sustitución:
y ya.
-       Gráfica de la función Seno
Si 
graficas la función y = sen(x) en un plano cartesiano, obtendrías la siguiente figura:
Observa que la función no pasa de 1 por arriba y de -1 por abajo. Se dice entónces que la función está "acotada" entre -1 y +1. Los 
valores para los que la función llega hasta +1 o -1 son los múltiplos impares de ¶ / 2 , o sea:
con n entero y mayor que cero.
La función seno(x) tiene periodo de 2¶, esto es, que cuando x es igual a 2¶, la función se vuelve a repetir tomando los valores que tomó a partir del cero.

-       Función Coseno:
La función Coseno se obtiene de dividir el cateto adyacente de un triángulo rectángulo, entre su hipotenusa:
Así por ejemplo, en el triángulo rectángulo siguiente:
el coseno del ángulo alpha será:
Para obtener el valor de ángulo alpha, hay que sacar la función inversa del coseno:
cualquier calculadora científica lo puede hacer, y generalmente hay que apretar una tecla "shift" o "2daf" que se encuentra típicamente en la esquina superior izquierda, y luego apretar la tecla "cos":
para este caso, el resultado da: 53.13010...
que es el valor en decimal que corresponde al ángulo alpha.







Bloque VII            Utilizas funciones exponenciales y logarítmicas




















Función logarítmica
La función logarítmica en base a es la función inversa de la exponencial en base a.












Propiedades de los logaritmos
Los logaritmos, independientemente de la base elegida, cumplen una serie de propiedades comunes que los caracterizan. Así, logaritmo de su base es siempre 1; logb b = 1 ya que b1 = b. El logaritmo de 1 es cero (independientemente de la base); logb 1=0 ya que b0 = 1.
Si el número real a se encuentra dentro del intervalo 0 <  a < 1 entonces logb a da un valor negativo o se dice que es un logaritmo negativo. Es evidente, ya que si logaritmo de 1 es cero, entonces valores reales menores que uno serán negativos por ser la función logarítmica estrictamente creciente y cuyo recorrido es (-∞, +∞). También se puede demostrar usando la identidad logarítmica logb(x/y)=logb x - logb y; puesto que a pertenece al intervalo 0 <  a < 1, suinverso a-1 será mayor que uno, con lo que logb(a)=logb(1/a-1) = logb 1 - logb(a-1)= -logb(a-1).
Los números negativos no tienen logaritmo en el cuerpo de los reales R, ya que cualesquiera que sea el exponente n, se tendrá siempre que bn será mayor que cero, bn > 0; en consecuencia, no hay ningún valor real de n que pueda satisfacer bn = x cuando x sea menor que 0. Sin embargo, este obstáculo se puede salvar, ampliando el dominio de definición al cuerpo de los números complejos C, pudiendo calcular logaritmos de números negativos usando ellogaritmo complejo o recurriendo a la fórmula de Euler.
Las potencias consecutivas de una base forman una progresión geométrica y la de los exponentes una progresión aritmética. Por ejemplo, las potencias de 2 son 1,2,4,8,16,32,64...etc y sus exponentes serán 0, 1, 2, 3, 4... etc ya que 20 = 1, 21 = 2, 22 = 4, 23 = 8, y 24 = 16 etc. luego log2 1 = 0, log2 2 = 1, log2 4 = 2, log2 8 = 3 y log2 16 = 4 etc.